首页> 外文OA文献 >Tackling the flip ambiguity in wireless sensor network localization and beyond
【2h】

Tackling the flip ambiguity in wireless sensor network localization and beyond

机译:解决无线传感器网络本地化及其他方面的翻转模糊问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There have been significant advances in range-based numerical methods for sensor network localizations over the past decade. However, there remain a few challenges to be resolved to satisfaction. Those issues include, for example, the flip ambiguity, high level of noises in distance measurements, and irregular topology of the concerning network. Each or a combination of them often severely degrades the otherwise good performance of existing methods. Integrating the connectivity constraints is an effective way to deal with those issues. However, there are too many of such constraints, especially in a large and sparse network. This presents a challenging computational problem to existing methods. In this paper, we propose a convex optimization model based on the Euclidean Distance Matrix (EDM). In our model, the connectivity constraints can be simply represented as lower and upper bounds on the elements of EDM, resulting in a standard 3-block quadratic conic programming, which can be efficiently solved by a recently proposed 3-block alternating direction method of multipliers. Numerical experiments show that the EDM model effectively eliminates the flip ambiguity and retains robustness in terms of being resistance to irregular wireless sensor network topology and high noise levels.
机译:在过去的十年中,用于传感器网络定位的基于范围的数值方法取得了重大进展。但是,仍然存在一些需要解决的挑战。这些问题包括,例如,模糊不清,距离测量中的高水平噪声以及相关网络的不规则拓扑。它们中的每一个或它们的组合通常会严重降低现有方法的其他良好性能。集成连接性约束是解决这些问题的有效方法。但是,这样的约束太多了,尤其是在大型而稀疏的网络中。这给现有方法提出了挑战性的计算问题。在本文中,我们提出了基于欧氏距离矩阵(EDM)的凸优化模型。在我们的模型中,连通性约束可以简单地表示为EDM元素的上下限,从而形成标准的3块二次圆锥编程,可以通过最近提出的乘数3块交替方向方法有效地解决该问题。 。数值实验表明,EDM模型在抵抗不规则无线传感器网络拓扑和高噪声水平方面有效地消除了翻转模糊性,并保留了鲁棒性。

著录项

  • 作者

    Bai, Shuanghua; Qi, Hou-Duo;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号